
Tensor-Optimized Hardware Accelerates Fused
Discontinuous Galerkin Simulations

Alexander Breuer∗, Alexander Heinecke† and Yifeng Cui∗

∗San Diego Supercomputer Center, UC San Diego, San Diego, CA, USA
†Parallel Computing Lab, Intel Corporation, Santa Clara, CA, USA

Abstract—In recent years the computation/memory balance of
processors continuously shifted towards computation. The rise of
Deep Learning, which is based on matrix multiplications, accel-
erated this path, especially in terms of single precision and lower
precision computation. An important research question is if this
development can be leveraged for traditional HPC. In this work
we demonstrate that a high order discontinuous Galerkin solver
for seismic wave propagation can execute in single precision
without loss of modeling accuracy. Additionally, we extended its
kernels to support the Intel Knights Mill CPU with 14 TFLOPS
of tensor-optimized single precision performance. This allows us
to exploit the hardware’s special computation capabilities, even
in a regular HPC application with sparse linear algebra kernels.
At the cluster-level, Knights Mill can obtain the same application
performance as the latest top-bin dual socket Intel Xeon Platinum
nodes. Compared to the HPC-focused Knights Landing processor,
speed-ups of up to 1.6× are possible, depending on the scenario.
Additionally, we are able to increase the throughput of seismic
discontinuous Galerkin methods by 4.2×, when comparing our
solver’s single precision and fifth order performance to the SC
2017 best-paper award winning work.

I. INTRODUCTION AND RELATED WORK

Until two years ago, the development of processors for
traditional High Performance Computing (HPC) use cases
has targeted a more and more complicated design principle:
“Increase the memory bandwidth at the same rate as the
compute capabilities of the processor itself”. The need for
a balanced platform is based on the algorithmic patterns
of HPC workloads. The fast rise of deep learning changed
this design view of computer architectures. Deep learning
algorithms rely on tensor operations, implemented as General
Matrix-Matrix Multiplications (GEMMs). More importantly,
single precision (FP32) GEMM, half precision (FP16), or
even quantized integers are used for deep learning. Therefore,
several vendors invested in developing processors with focus
on lowered precision, while not increasing memory bandwidth.

We examine how the seismic solver EDGE [1] can benefit
from less-balanced, tensor-optimized hardware. In addition,
we compare our obtained performance to regular general
purpose processors with similar machine balances but large
caches and wide execution engines. Optimal utilization of
tensor-optimized hardware by EDGE required several steps,
which also helps with best performance on general purpose
CPUs. As illustrated in Fig. 1, our poster’s contribution is
two-fold: a) applying, analyzing and verifying algorithmic
advances to EDGE for general purpose CPUs, b) discussion

LIBXSMM

Vanilla OpenMP

MPI

Fused Simulations

Floating Point
Precision

Convergence Rate

Source Discretization

Meshing

Velocity Model

Topography

Spatial Resolution

Modeling Parameters

Verification Study

LOH.1

LOH.2

Can4

HSP1a

HSP1b

HHS1

Partitioning

Strong and Weak
Scalability

Parallelization

Supercomputing
Resources

Sparsity Patterns

Fig. 1. Illustration of EDGE’s modeling and simulation pipeline. The
parallelization is influenced by a multitude of factors. Our areas of contribution
are highlighted in gray.

and evaluation of optimizations needed for tensor-optimized
hardware. Our poster reports on the following contributions:

• Extension of previous fused DG-FEM simulation tech-
nology to arbitrary orders of convergence and high-
performance x86 CPU architectures.

• Analysis of FP32 accuracy and performance in an ex-
tensive verification study for seismic wave propagation.
The analysis of the LOH.1 benchmark is part this work,
including an electronic supplement and references to
further benchmark results (see App. A).

• Revised Just-In-Time (JIT) assembly kernel generation
of core computational routines in the LIBXSMM library,
targeting the various processors of our study. Tensor-
optimized hardware, which is very specific to dense
GEMM, allows us to outperform the SC 2017 best-paper
award winning work [2] by 4.2×.

II. FUSED SEISMIC SIMULATIONS

EDGE solves the three-dimensional isotropic elastic wave
equations in velocity-stress formulation. These are given as a
system of linear hyperbolic partial differential equations:

qt +Aqx +Bqy + Cqz = S. (1)
t is time and ~x = (x, y, z) the vector of Cartesian
coordinates. Subscripts in Eq. 1 denote partial derivatives.
q(~x, t) = (σxx, σyy, σzz, σxy, σxz, σyz, u, v, w) is the space-
time-dependent vector of quantities, containing the three nor-



33 77 92 33 77 92

50 50 142 125 20 125125

50 50 142 125 81 24

142

Fig. 2. Sparsity patterns of the ADER-DG matrices for a fourth order method.
On top of each matrix, the number of non-zero entries is given.

mal stresses σxx, σyy and σzz , the three shear stresses σxy ,
σxz , and σyz , and the three particle velocities u, v and w.
A(~x), B(~x), C(~x) are the three space-dependent Jacobians,
discretizing the seismic velocity model. Application of the
ADER-DG machinery leads to a scheme, composed of sparse
matrix-matrix operations [1]. These matrices are repeatedly
applied to the degrees of freedom to advance the simulation
in time and illustrated for a fourth order method in Fig. 2.

EDGE heavily exploits the fact that many of the grand chal-
lenges in earthquake system science require large ensembles
of geometrically similar forward simulations. A traditional
solver s operates on fixed input i to obtain observations
o = s(i). Now, if we require observations for n different inputs
In = (i1, i2, . . . , in), e.g., different seismic sources, we would
execute the solver n times to obtain the set of observations
On = (o1, o2, . . . , on) = (s(i1), s(i2), . . . , s(in)). In contrast,
EDGE’s solver Sm operates in parallel on m ≤ n different
inputs Im = (i1, i2, . . . , im) to obtain a set of observations in
a single execution: Om = (o1, o2, . . . , om) = Sm(Im). The
advantages of this basic paradigm range from higher data-
reuse through shared data structures, e.g., the velocity model,
towards better parallelization opportunities at all levels.

Single vs. Double Precision Floating Point Arithmetic: In
the past, seismic ADER-DG simulations have been carried
out in double precision arithmetic [2]–[6]. The reasons are: a)
extensive verification was only performed for double precision,
and b) potential speedups are annihilated through low SIMD
parallelism of non-fused ADER-DG kernels. As part of a
larger parameter study, c.f. App. A, we present verification
results using the Layer Over Halfspace benchmark. We ex-
ecuted the benchmark for convergence rates O ∈ {2, . . . , 6}
in single and double precision arithmetic. We observe a good
fit of EDGE’s solutions with the reference, while the 32-
bit synthetics are visually indistinguishable from the 64-bit
solution (see App. A). In conjunction with our extensive multi-
parameter study and other verification settings [7], we con-
clude that single precision arithmetic is sufficient for EDGE’s
wave propagation solver. This observation agrees with other
seismic solvers, e.g., [8] or [9].

III. KERNEL OPTIMIZATIONS

For the presented work we extended LIBXSMM heavily.
This extension is many-fold: a) small dense regular GEMM

����

����

����

����

����

����

����

����

���� ���� ���� 	��� ���� ���� ���� ���� 
���

������������	�������������

��������������������������

������������	����� !""

������������������ !""

�������#�����	����� !""

�������#����������� !""

!���!$��!����	�

!���!$��!������

Fig. 3. Speed-up over the SC 2017 best paper award-winning work [2] on
the KNM processor using fifth order and global time stepping.

with QFMA (Knight Mill) support, b) small dense fused
GEMM with QFMA (Knights Mill) support (for fused sim-
ulation with low sparsity, e.g. the flux solver), c) sparse fused
GEMM with QFMA (Knights Mill) support, d) small dense
fused GEMM for regular AVX2 and AVX512 architectures e)
sparse fused GEMM for regular AVX2 and AVX512 architec-
tures. Our optimizations hardwire the sparsity pattern of the
sparse operator matrices to maximize execution of non-zero
FLOPs. That means, runtime-compiling an assembly kernel
into the instruction stream that exactly matches the sparse
matrix operator. We optimized for low overheads stemming
from processing the sparse matrix structure and selecting the
corresponding DOF-matrix entries at runtime. A pseudo-code
example for c) is given in App. A.

Improvement Over State-Of-The-Art: Fig. 3 depicts the
speedups over the SC 2017 best paper award-winning work
[2] on the Knights Mill processor using order O = 51. This is
done by using a single node setup of the LOH.1 benchmark
with 350,264 elements. Due to our JIT’ed assembly kernels we
can outperform the SC 2017 work. This even is true without
leveraging fused simulations or single precision arithmetic.
The combined speedup of EDGE over [2] is 7.0×, when
exploiting FP32 and fused simulations as modeling parameters
(see Fig. 1). When also running SeisSol in single precision,
EDGE’s fused simulation throughput is still 4.2× higher. Since
[2] only uses LIBXSMM in a static way, but not at runtime,
SeisSol cannot make use of QFMA in case of the FP32 exe-
cution. Fig. 3 also highlights that our fused assembly kernels
utilize the hardware much more efficiently than single runs
or [2] because all multiplications with padded zeros disappear
and perfect vector code is executed. Additionally, we can see
why runtime code generation tailored to the sparse matrix
operators is essential. The performance delivered by running
EDGE using the Intel compiler with vectorization pragmas
(denoted by C++) is extremely poor, although it executes
fused simulations. Our runtime assembly kernel generators,
that have been added to LIBXSMM, are able to outperform
the compiler by 140x (FP32) and 65x (FP64) as the compiler
fails to vectorize the dense C++ vanilla kernels, but also misses
essential prefetching [10] and blocking strategies for ADER-
DG.

1We compiled SeisSol according to [2]’s artifact description and confirmed
that our binary reproduces the reported performance on the same hardware.



REFERENCES

[1] A. Breuer, A. Heinecke, and Y. Cui, “Edge: Extreme scale fused seismic
simulations with the discontinuous galerkin method,” in International
Supercomputing Conference. Springer, 2017, pp. 41–60.

[2] C. Uphoff, S. Rettenberger, M. Bader, E. H. Madden, T. Ulrich, S. Woll-
herr, and A.-A. Gabriel, “Extreme scale multi-physics simulations of the
tsunamigenic 2004 sumatra megathrust earthquake,” 2017.

[3] A. Breuer, A. Heinecke, and M. Bader, “Petascale local time stepping
for the ader-dg finite element method,” in Parallel and Distributed
Processing Symposium, 2016 IEEE International, 2016.

[4] A. Heinecke, A. Breuer, M. Bader, and P. Dubey, “High order seismic
simulations on the intel xeon phi processor (knights landing),” in
International Conference on High Performance Computing, 2016.

[5] A. Heinecke, A. Breuer, S. Rettenberger, M. Bader, A.-A. Gabriel,
C. Pelties, A. Bode, W. Barth, X.-K. Liao, K. Vaidyanathan et al., “Petas-
cale high order dynamic rupture earthquake simulations on heteroge-
neous supercomputers,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014.

[6] A. Breuer, A. Heinecke, S. Rettenberger, M. Bader, A. Gabriel, and
C. Pelties, “Sustained petascale performance of seismic simulations with
SeisSol on SuperMUC,” in International Supercomputing Conference,
2014.

[7] Alexander Breuer, Alexander Heinecke, Yifeng Cui, “EDGE: Bench-
marking the Seismic Wave Propagation Solver,” in Proceedings of
the 11th National Conference in Earthquake Engineering, Earthquake
Engineering Research Institute, Los Angeles, CA. 2018 (to appear).

[8] H. Fu, C. He, B. Chen, Z. Yin, Z. Zhang, W. Zhang, T. Zhang, W. Xue,
W. Liu, W. Yin et al., “18.9-pflops nonlinear earthquake simulation on
sunway taihulight: enabling depiction of 18-hz and 8-meter scenarios,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 2.

[9] M. Rietmann, P. Messmer, T. Nissen-Meyer, D. Peter, P. Basini, D. Ko-
matitsch, O. Schenk, J. Tromp, L. Boschi, and D. Giardini, “Forward
and adjoint simulations of seismic wave propagation on emerging large-
scale gpu architectures,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society Press, 2012, p. 38.

[10] “Ch. 21,” in Intel Xeon Phi Processor High Performance Programming
Knights Landing Edition, J. Reinders, J. Jeffers, and A. Sodani, Eds.,
2016.



A. ARTIFACT DESCRIPTION AND EVALUATION APPENDIX:
TENSOR-OPTIMIZED OPTIMIZED HARDWARE

ACCELERATES FUSED DISCONTINUOUS GALERKIN
SIMULATIONS

A. Abstract

This artifact description appendix gives an overview of
the used software and hardware. We provide details on the
availability of all components and describe details of the solver
EDGE and library LIBXSMM. This description is comple-
mented by electronic supplements, providing a multitude of
configurations for the Layer Over Halfspace benchmark 1
(LOH.1). Further, we describe the experiment workflow, give
details on how performance was measured.

B. Description

1) Check-list (Artifact meta information):
• Algorithm: Arbitrary high order DERivatives Discontinuous

Galerkin Finite Element Method (ADER-DG-FEM) solving the
elastic wave equations in velocity-stress form.

• Program: EDGE (solver), LIBXSMM (kernels).
• Data set: Discretization of the LOH.1 benchmark with an un-

structured tetrahedral mesh (1,864,616 elements) and a double-
couple point source.

• Hardware: Intel Xeon Phi 7250, Intel Xeon Phi 7295, Intel
Scalable Xeon 8180.

• Execution: MPI+OpenMP.
• Output: Nine receivers at the free-surface boundary (verifica-

tion runs only).
• Experiment workflow: 1) Pre-processing: Meshing, partition-

ing and source sampling, 2) Simulation, 3) Comparison with
reference solution (verification only).

• Publicly available?: Yes, BSD3 for software, CC0’d data.

2) How software can be obtained: EDGE is available from
http://dial3343.org (BSD3). LIBXSMM is available from https:
//github.com/hfp/libxsmm (BSD3).

3) Hardware dependencies: Optimized, fused kernels are
available in single (8 or 16 simulations) and double precision
arithmetic (4 or8 simulations) for architectures supporting
AVX, AVX2, AVX512 or AVX512+QFMA. Optimized kernels
for single forward simulations are available for architectures
supporting SSE3, AVX, AVX2, or AVX512. As a fallback,
vanilla kernels, not using LIBXSMM, are available.

4) Datasets: As part of this work, we provide input and out-
put of a verification study for the LOH.1 benchmark. The input
covers 10 different configurations with varying refinement. We
share the Gmsh-scripts, generated ASCII meshes, partitioned
HDF5-meshes, the sampled point-source, and EDGE’s XML-
configurations. Raw and analyzed output is available for 6
inputs, using single and double precision, and orders 2-7 (see
Artifact Evaluation). We provide raw and analyzed results for
six different mesh resolutions, six different orders, and single
and double precision arithmetic. All input data, output data,
and scripts of our LOH.1 verification study are available from
http://doi.org/10.17605/OSF.IO/H9G5N. Data of further verifi-
cation benchmarks is available from EDGE’s data repository
at http://opt.dial3343.org.

O = 2 O = 3 O = 4 O = 5 O = 6
sparse 6,642 19,944 52,002 121,032 260,370
dense 8,064 30,888 98,136 267,336 643,680
overhead 21 % 55 % 89 % 121 % 147 %

TABLE I
REQUIRED NUMBER OF FLOATING POINT OPERATIONS PER ELEMENT

UPDATE OF THE ADER-DG SCHEME IN DEPENDENCE OF THE
CONVERGENCE RATE. SHOWN ARE SPARSE AND DENSE MATRIX

OPERATORS. THE LAST ROW SHOWS THE RESPECTIVE OVERHEAD.

0 2 4 6 8 10 12 14 16 18

0

2

4

6

8

10

12

14

16

18

#non-zero: 77

Fig. 4. Sparsity pattern of the second transposed stiffmatrix in fourth order.

C. Evaluation and Expected Result

For all multi-node application performance measurements,
we used the partitioned mesh provided in the archive
tet4_150_16.h5m.tar.bz2 of the electronic artifacts.
The respective configuration is given in tet4_150.xml,
where we disabled the receivers and reduced the simulation’s
end time for a target execution time of at least 20 minutes in
all configurations. EDGE prints the time consumption of the
computational loop over the time steps. We used this timer
and the reported number of floating point operations in Tab. I
to derive the respective non-zero performance reported in this
work.

D. LIBXSMM Kernel Generation

Efficient utilization of sparse fused GEMM with QFMA
(Knights Mill), required us to optimize two kernels:

• K1: sparse-matrix × 3D-tensor = 3D-tensor, this opera-
tion is needed for multiplication with Jacobians and flux-
solvers. In BLAS-notation, the sparse matrix A is a 9×9
matrix, whereas B and C are dense 3D-tensors.

• K2: 3D-tensor × sparse-matrix = 3D-tensor, this oper-
ation is needed for multiplication with stiffness or flux
matrices. The dimensions of the sparse matrix B depend
on the order and stage of the integration kernels.

Pseudo-code for K2 in Alg. 1. According to [1] the sparse
matrix should be stored in compressed sparse row (CSR)
format, to match the row major storage format of the 3D-
tensors. We highlight the LIBXSMM-generated KNM code
by using the second transposed stiffness matrix in fourth
order, which falls into the K2 category. Its sparsity pattern
is depicted in Fig. 4. The runtime-generated code for 16
fused runs on KNM for FP32 of the LIBXSMM generator
implemented in this work is given below. The assembly kernel
obeys to System-V x86 64 ABI, which means that the matrix’s
A pointer comes in rsi, matrix’s B is provided through
rdi and matrix’s C by rdx. The above shown extremely

http://dial3343.org
https://github.com/hfp/libxsmm
https://github.com/hfp/libxsmm
http://doi.org/10.17605/OSF.IO/H9G5N
http://opt.dial3343.org


Algorithm 1 Code generator sketch of kernel K2, sparse
matrix B is stored in CSC format.

1: nb← d#modes/scratchpad sizee
2: for all m = 1 to #quantities do
3: for all blk = 1 to nb do
4: n0 ← (blk − 1) · scratchpad size
5: for all n = 1 to scratchpad size do cn[1 : f ] ←

C[m][n0 + n][1 : f ] end for
6: for all k = 1 to #modes do
7: for all n = 1 to scratchpad size do
8: b#Entries ← colB [n0 + n+ 1]− colB [n0 + n]
9: for l = 1 to b#Entries do

10: if rowB [colB [n0 + n] + l] == k then
11: b[1 : f ]← broadcast(B[colB [n0 + n] + l])
12: cn[1 : f ] ← FMA(A[m][k][1 : f ], b[1 :

f ], cn[1 : f ])
13: end if
14: end for
15: end for
16: for all n = 1 to bkszn do C[m][n0+n][1 : f ]←

cn[1 : f ] end for
17: end for
18: end for
19: end for

high efficiency is now obvious: the kernel only consists of
fully-vectorized AVX512 instruction and not a single scalar
instruction in the critical loop. r12 is used to loop over the
quantities. r13,r14,r15 are not hot in this particular kernel.
push rbx
push r12
push r13
push r14
push r15
mov r12, 0x0
mov r13, 0x0
mov r14, 0x0
0x1e:
add r12, 0x1
vmovups zmm0, zmmword ptr [rdx]
vmovups zmm1, zmmword ptr [rdx+0x40]
vmovups zmm2, zmmword ptr [rdx+0x80]
vmovups zmm3, zmmword ptr [rdx+0xc0]
vmovups zmm4, zmmword ptr [rdx+0x100]
vmovups zmm5, zmmword ptr [rdx+0x140]
vmovups zmm6, zmmword ptr [rdx+0x180]
vmovups zmm7, zmmword ptr [rdx+0x1c0]
vmovups zmm8, zmmword ptr [rdx+0x200]
vmovups zmm9, zmmword ptr [rdx+0x240]
vmovups zmm10, zmmword ptr [rdx+0x280]
vmovups zmm11, zmmword ptr [rdx+0x2c0]
vmovups zmm12, zmmword ptr [rdx+0x300]
vmovups zmm13, zmmword ptr [rdx+0x340]
vmovups zmm14, zmmword ptr [rdx+0x380]
vmovups zmm15, zmmword ptr [rdx+0x3c0]
vmovups zmm16, zmmword ptr [rdx+0x400]
vmovups zmm17, zmmword ptr [rdx+0x440]
vmovups zmm18, zmmword ptr [rdx+0x480]
vmovups zmm19, zmmword ptr [rdx+0x4c0]
vmovups zmm28, zmmword ptr [rdi]
vmovups zmm28, zmmword ptr [rdi+0x40]
vmovups zmm28, zmmword ptr [rdi+0x80]
vfmadd231ps zmm0, zmm28, dword ptr [rsi]{1to16}
vmovups zmm28, zmmword ptr [rdi+0xc0]
vfmadd231ps zmm0, zmm28, dword ptr [rsi+0x4]{1to16}
vmovups zmm28, zmmword ptr [rdi+0x100]
vmovups zmm28, zmmword ptr [rdi+0x140]

vmovups zmm29, zmmword ptr [rdi+0x180]
vmovups zmm30, zmmword ptr [rdi+0x1c0]
vmovups zmm31, zmmword ptr [rdi+0x200]
v4fmaddps zmm0, zmm28, xmmword ptr [rsi+0x8]
v4fmaddps zmm1, zmm28, xmmword ptr [rsi+0x40]
vfmadd231ps zmm2, zmm29, dword ptr [rsi+0x78]{1to16}
vfmadd231ps zmm2, zmm31, dword ptr [rsi+0x7c]{1to16}
vfmadd231ps zmm3, zmm31, dword ptr [rsi+0xa0]{1to16}
vmovups zmm28, zmmword ptr [rdi+0x240]
vfmadd231ps zmm0, zmm28, dword ptr [rsi+0x18]{1to16}
vfmadd231ps zmm1, zmm28, dword ptr [rsi+0x50]{1to16}
vfmadd231ps zmm2, zmm28, dword ptr [rsi+0x80]{1to16}
vfmadd231ps zmm3, zmm28, dword ptr [rsi+0xa4]{1to16}
vmovups zmm28, zmmword ptr [rdi+0x280]
vmovups zmm28, zmmword ptr [rdi+0x2c0]
vmovups zmm29, zmmword ptr [rdi+0x300]
vmovups zmm30, zmmword ptr [rdi+0x340]
vmovups zmm31, zmmword ptr [rdi+0x380]
v4fmaddps zmm0, zmm28, xmmword ptr [rsi+0x1c]
v4fmaddps zmm1, zmm28, xmmword ptr [rsi+0x54]
vfmadd231ps zmm2, zmm29, dword ptr [rsi+0x84]{1to16}
vfmadd231ps zmm2, zmm30, dword ptr [rsi+0x88]{1to16}
v4fmaddps zmm4, zmm28, xmmword ptr [rsi+0xbc]
vfmadd231ps zmm5, zmm29, dword ptr [rsi+0xe0]{1to16}
vfmadd231ps zmm5, zmm30, dword ptr [rsi+0xe4]{1to16}
vfmadd231ps zmm6, zmm30, dword ptr [rsi+0xfc]{1to16}
vmovups zmm28, zmmword ptr [rdi+0x3c0]
vmovups zmm29, zmmword ptr [rdi+0x400]
vmovups zmm30, zmmword ptr [rdi+0x440]
vmovups zmm31, zmmword ptr [rdi+0x480]
v4fmaddps zmm0, zmm28, xmmword ptr [rsi+0x2c]
v4fmaddps zmm1, zmm28, xmmword ptr [rsi+0x64]
v4fmaddps zmm2, zmm28, xmmword ptr [rsi+0x8c]
v4fmaddps zmm3, zmm28, xmmword ptr [rsi+0xa8]
v4fmaddps zmm4, zmm28, xmmword ptr [rsi+0xcc]
v4fmaddps zmm5, zmm28, xmmword ptr [rsi+0xe8]
vfmadd231ps zmm6, zmm29, dword ptr [rsi+0x100]{1to16}
vfmadd231ps zmm6, zmm31, dword ptr [rsi+0x104]{1to16}
v4fmaddps zmm7, zmm28, xmmword ptr [rsi+0x10c]
vfmadd231ps zmm8, zmm29, dword ptr [rsi+0x120]{1to16}
vfmadd231ps zmm8, zmm31, dword ptr [rsi+0x124]{1to16}
vfmadd231ps zmm9, zmm31, dword ptr [rsi+0x12c]{1to16}
vmovups zmm28, zmmword ptr [rdi+0x4c0]
vfmadd231ps zmm0, zmm28, dword ptr [rsi+0x3c]{1to16}
vfmadd231ps zmm1, zmm28, dword ptr [rsi+0x74]{1to16}
vfmadd231ps zmm2, zmm28, dword ptr [rsi+0x9c]{1to16}
vfmadd231ps zmm3, zmm28, dword ptr [rsi+0xb8]{1to16}
vfmadd231ps zmm4, zmm28, dword ptr [rsi+0xdc]{1to16}
vfmadd231ps zmm5, zmm28, dword ptr [rsi+0xf8]{1to16}
vfmadd231ps zmm6, zmm28, dword ptr [rsi+0x108]{1to16}
vfmadd231ps zmm7, zmm28, dword ptr [rsi+0x11c]{1to16}
vfmadd231ps zmm8, zmm28, dword ptr [rsi+0x128]{1to16}
vfmadd231ps zmm9, zmm28, dword ptr [rsi+0x130]{1to16}
vmovups zmmword ptr [rdx], zmm0
vmovups zmmword ptr [rdx+0x40], zmm1
vmovups zmmword ptr [rdx+0x80], zmm2
vmovups zmmword ptr [rdx+0xc0], zmm3
vmovups zmmword ptr [rdx+0x100], zmm4
vmovups zmmword ptr [rdx+0x140], zmm5
vmovups zmmword ptr [rdx+0x180], zmm6
vmovups zmmword ptr [rdx+0x1c0], zmm7
vmovups zmmword ptr [rdx+0x200], zmm8
vmovups zmmword ptr [rdx+0x240], zmm9
vmovups zmmword ptr [rdx+0x280], zmm10
vmovups zmmword ptr [rdx+0x2c0], zmm11
vmovups zmmword ptr [rdx+0x300], zmm12
vmovups zmmword ptr [rdx+0x340], zmm13
vmovups zmmword ptr [rdx+0x380], zmm14
vmovups zmmword ptr [rdx+0x3c0], zmm15
vmovups zmmword ptr [rdx+0x400], zmm16
vmovups zmmword ptr [rdx+0x440], zmm17
vmovups zmmword ptr [rdx+0x480], zmm18
vmovups zmmword ptr [rdx+0x4c0], zmm19
add rdx, 0x500
add rdi, 0x500
cmp r12, 0x9
jl 0x1e
pop r15
pop r14
pop r13
pop r12
pop rbx
ret


	Introduction And Related Work
	Fused Seismic Simulations
	Kernel Optimizations
	References
	Artifact Description and Evaluation Appendix: Tensor-Optimized Optimized Hardware Accelerates Fused Discontinuous Galerkin Simulations
	Abstract
	Description
	Check-list (Artifact meta information)
	How software can be obtained
	Hardware dependencies
	Datasets

	Evaluation and Expected Result
	LIBXSMM Kernel Generation



