
This is the author version of the work, accepted for publication in the ISC High Performance 2019 confer-
ence proceedings. The final authenticated version will be available online at https://www.springer.com as
part of Springer’s Lecture Notes in Computer Science (LNCS) series.

Petaflop Seismic Simulations
in the Public Cloud

Alexander Breuer1 and Yifeng Cui1

UC San Diego, La Jolla CA 92093, USA
{anbreuer,yfcui}@ucsd.edu

Abstract. During the last decade cloud services and infrastructure as
a service became a popular solution for diverse applications. Addition-
ally, hardware support for virtualization closed performance gaps, com-
pared to on-premises, bare-metal systems. This development is driven
by offloaded hypervisors and full CPU virtualization. Today’s cloud ser-
vice providers, such as Amazon or Google, offer the ability to assemble
application-tailored clusters to maximize performance. However, from an
interconnect point of view, one has to tackle a 4-5× slow-down in terms of
bandwidth and 25× in terms of latency, compared to latest high-speed
and low-latency interconnects. Taking into account the high per-node
and accelerator-driven performance of latest supercomputers, we ob-
serve that the network-bandwidth performance of recent cloud offerings is
within 2× of large supercomputers. In order to address these challenges,
we present a comprehensive application-centric approach for high-order
seismic simulations utilizing the ADER discontinuous Galerkin finite el-
ement method, which exhibits excellent communication characteristics.
This covers the tuning of the operating system, normally not possible
on supercomputers, micro-benchmarking, and finally, the efficient execu-
tion of our solver in the public cloud. Due to this performance-oriented
end-to-end workflow, we were able to achieve 1.09 PFLOPS on 768 AWS
c5.18xlarge instances, offering 27,648 cores with 5 PFLOPS of theoretical
computational power. This correlates to an achieved peak efficiency of
over 20% and a close-to 90% parallel efficiency in a weak scaling setup.
In terms of strong scalability, we were able to strong-scale a science sce-
nario from 2 to 64 instances with 60% parallel efficiency. This work is,
to the best of our knowledge, the first of its kind at such a large scale.

Keywords: high-order DG · seismic simulations · earthquake simula-
tions · cloud computing · petascale computing

1 Introduction and Related Work

About 10 years after the introduction of cloud services, their 2018 worldwide
revenue is estimated above 175 billion U.S. dollars, with a projected growth of
over 17% in 20191. Further, recent enhancements of Cloud Service Providers

1 Source: https://www.gartner.com/en/newsroom/press-releases/2018-09-12-gartner-
forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2019.
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(CSPs), e.g., the introduction of lightweight virtualizations and high-bandwidth
networks, led to competitive solutions for the High Performance Computing
(HPC) market. Yet, federal and institutional machines dominate the November
2018 Top500 List. This dominance is accompanied by an intense discussion of
the HPC community, often questioning the feasibility of clusters, operating in
the cloud [7, 14, 18, 17]. Therefore, virtualized Infiniband solutions [15] or loosely
coupled applications were proposed [8].

This work studies the Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) and the Google Compute Engine (GCE) of the Google Cloud Platform
(GCP) in the context of large-scale HPC. First, we present thorough general-
purpose performance benchmarking, explaining crucial HPC implications of the
cloud providers’ hardware settings. Next, we present a comprehensive study
of high-order seismic simulations with the ADER discontinuous Galerkin finite
element method. The method has been continuously and extensively optimized
for extreme-scale performance (more than 10 PFLOPS) in the last five years
[19, 4, 22, 2, 12, 3]. However, respective advancements are limited to on-premises
bare-metal machines. By exploiting the public cloud for the setup of tailored
elastic supercomputers, we obtain a true end-to-end approach, starting at the
machine setup, covering HPC optimizations, and reaching the full spectrum of
modeling and simulation. Our contributions in this work are as follows:

a) Sec. 2 motivates the need for fused forward simulations in earthquake science
and summarizes the application EDGE, short for Extreme-scale Discontinuous
Galerkin Environment. This section also introduces a new open source surface
meshing tool and a new dynamic load balancing scheme for the solver’s shared
memory parallelization in noisier execution environments.

b) Sec. 3 illustrates, that the open-source HPC ecosystem is well-prepared to
operate high performance cloud computing solutions with latest hardware en-
hancements. Here, we describe the optimization of the CentOS7 Linux operating
system for our cloud clusters, the preparation of custom machine images through
system-wide setups of dependencies, and the use of the batch scheduling tools
AWS ParallelCluster and Slurm GCP for elastic scalability.

c) Sec. 4 assesses the theoretical performance of AWS EC2 and GCE through rig-
orous micro-benchmarking and shows that recent cloud-offerings are performance-
comparable to bare-metal, on-premises systems.

d) Sec. 5 analyzes the performance and scalability of the software EDGE in the
cloud. We demonstrate that it is possible to achieve petascale performance for
tightly coupled high-order DG simulations. This includes nearly matching the
performance of an entire 2013 Top10 supercomputer (SuperMUC) for the same
scientific workload, when using an elastic petascale cluster in the public cloud.

We conclude our presentation by summarizing transferable observations and
discussing implications for the future of HPC in Sec. 6.
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2 Earthquake Simulations

High-dimensional challenges in earthquake science are common and have an in-
herently parallel inter-problem component. Important examples are Probabilis-
tic Seismic Hazard Analysis (PSHA), the derivation of seismic velocity mod-
els through tomographic inversion, or seismic source inversions. Common ap-
proaches exploit the linearity of the used seismic wave propagation models. This
enables reciprocity in the Strain Green’s Tensors (SGTs) [5, 24], which, in simple
words, allows us to exchange seismic sources with seismic receivers.

For example, CyberShake [11], the approach of the Southern California Earth-
quake Center to PSHA, discretizes the study area into hazard sites. Each site is
a point of interest at the surface, where we quantify the seismic hazard, originat-
ing from potential fault ruptures in the vicinity of the site. We have two options
to compute the ground shaking from the discretized high-dimensional space of
uncertain ruptures: a) Run one forward simulation for every fault rupture and
sample the seismic wave field at each of the hazard sites, or b) exploit reciprocity
by running two (horizontal ground motion components only) or three forward
simulations for every hazard site, and sample the seismic wave field at the sur-
rounding faults. The latter case is preferable, if the number of hazard sites is
much smaller than the number of considered ruptures, as in the case of PSHA.

In either case, the simulation setup of close-by ruptures in a), or close-by
hazard sites in b) is, except for the used source discretization, typically identi-
cal. Shared parameters include the seismic velocity model, the mesh, the simula-
tions’ end time, and the output sampling of the wave field. From a computational
perspective, this allows us to exploit inter-problem parallelism by fusing multi-
ple forward simulations within one execution of the solver. The Extreme-scale
Discontinuous Galerkin Environment (EDGE) is the first seismic solver, which
integrates the idea of fused simulations into the entire modeling and simulation
pipeline [4]. The remainder of this section describes a model setup, covering the
San Andreas Fault’s Parkfield section using EDGE. This fused setup is also used
as the setting for our strong scaling study in Sec. 5.

2.1 Fused Forward Simulations

We use the Discontinuous Galerkin (DG) method in space and the ADER scheme
in time to solve the elastic wave equations in velocity-stress formulation. The
elastic wave equations are a linear system of hyperbolic partial differential equa-
tions:

qt +Aqx +Bqy + Cqz = S. (1)

x = (x, y, z) ∈ R3 is the vector of Cartesian coordinates and t ∈ R+ time. Sub-
scripts denote partial derivatives. The three normal stresses σxx, σyy and σzz, the
three shear stresses σxy, σxz and σyz, and the three particle velocities in x-, y- and
z-direction, given as u, v and w, are summarized in the nine-dimensional vector
of quantities q(x, t) = (σxx, σyy, σzz, σxy, σxz, σyz, u, v, w) ∈ R9. The three space-
dependent Jacobians A(x), B(x), C(x) ∈ R9×9 depend on the seismic velocity
model. The right-hand-side term, S(x, t), accounts for seismic sources.
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Application of the ADER-DG machinery leads to the discrete formulation.
We use unstructured tetrahedral meshes for the spatial discretization of the
computational domain. The discrete formulation consist of a series of small
and sparse matrix-tensor products, which drive our computational single core
performance. EDGE’s fused approach allows us to execute these products as
fully-vectorized sparse operators on cache-line-aligned degrees of freedom with-
out artificial zero-padding [4]. More precisely, the LIBXSMM-library2 is used to
run-time generate and compile vectorized kernels, targeting Intel’s AVX512 in-
struction set extensions. In the following, we use a fifth order ADER-DG scheme
in space and time, and refer to [4] for further details on EDGE’s discretization.

Previous versions of EDGE implemented the Standard Rupture Format3

(SRF) for the source terms S(x, t). The SRF discretizes kinematic ruptures as
a collection of rupturing planar sub-faults, which act on the stress tensor. We
replaced this implementation by a new and generic point source discretization
in this work. Our new HDF5-based source format allows us to modify the par-
ticle velocities (not only the stresses) in the source terms, as required for the
implementation of point forces at the surface. Surface point forces are, for ex-
ample, used for forward simulations in PSHA. Additionally, EDGE’s new source
input reduces the modeling burden by projecting specified sources, outside of
the computational domain, to the surface of the mesh.

2.2 Model Setup

Mesh: In the first step of our setup, we derived a surface triangulation from
the 1/3rd arc-second Digital Elevation Models (DEMs) of the USGS National
Map 3DEP Downloadable Data Collection4 in the area of interest. For this pur-
pose, we introduce the tool EDGEcut, based on the open-source library CGAL
[1, 23]. EDGEcut is able to automatically triangulate a projected DEM and to
compute feature-preserving intersections of the discretized mountain topography
with specified outflow boundaries. We used the transverse Mercator projection
with center at 35.817°N, 120.365°W to project the DEM to a plane. The projec-
tion center coincides with the epicenter of the 2004 Parkfield event in [6]. Further,
we introduced outflow boundaries at an 80 km epicentral distance in every car-
dinal direction and 40 km below sea level. EDGEcut supports problem-adapted
surface meshing by following the attractor concept of the volume mesher Gmsh
[9]. Here, we defined an attractor at (-6 km, 6 km, 0) and linearly coarsened the
surface mesh by eight times in an attractor-distance from 10 km to 50 km. We
used a minimal edge length of 200 m and identical refinement specifications for
the final volume meshing through Gmsh.

Velocity Model: We used a homogeneous velocity model with a density of ρ =
2.8 g/cm3, an s-wave velocity of vs = 1.2 km/s, and a p-wave velocity of vp =

2 LIBXSMM is available from: https://github.com/hfp/libxsmm.
3 http://equake-rc.info/static/publish/paper/SRF-Description-Graves 2.0.pdf.
4 https://catalog.data.gov/dataset/national-elevation-dataset-ned-1-3-arc-second-

downloadable-data-collection-national-geospatial
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3 km/s. Note, that EDGE’s tool EDGE-V supports data-based mesh annota-
tions via the Unified Community Velocity Model [20] and velocity-aware mesh
refinement. However, as outlined below, our focus in this work is topography
support for high-dimensional earthquake science.

Sources, Receivers and SGTs: Currently, most approaches to high-dimensional
earthquake science use flat topography. The reason is often originated in the use
of finite difference forward solvers, relying on regular meshes. As we are reaching
higher resolved frequencies through the use of more powerful supercomputers,
this lack of modeling complexity is getting more severe. Thus, for example in
PSHA, adding topography to the forward solves is one of the most urgent model
extensions. In this work, we benchmark the accuracy of three-dimensional recip-
rocal computations through SGTs, when using mountain topography in EDGE.
For this purpose we placed eight sources at the surface. Our setup uses two con-
figurations for each of the sources, a point force in x-direction (West-East), and
a point force in y-direction (South-North). The source-time function of the point
forces is given through the following Gaussian:

S(t) = e−60·t2 . (2)

In addition, we ran a single forward simulation with a single double-couple point
source, located at (0, 0,−7622.4 m). The source-time function of this source is a
Ricker wavelet:

S(t) =

(
1

2
− (1.92π)2 · t2

)
e−(1.92π)2·t2 . (3)

We obtained all simulation results in this section by using EDGE’s fifth or-
der ADER-DG scheme, 32-bit floating point precision, and by running in the
Google Cloud Platform. Fig. 1 illustrates our model setup, where the visualized
wave fields correspond to the eight forward simulations with the point force
in South-North direction. Further, similar to [24], Fig. 2 compares the synthet-
ics of the single forward simulation to the SGT-derived synthetics of the point
forces. Here, each of the signals was convolved with the Ricker wavelet as the
new source-time function. We observe an almost perfect fit of the seismograms,
which confirms the applicability of EDGE’s reciprocal SGT pipeline within our
modeling constraints. This procedure could now, for example, be extended to
PSHA, where the insertion of rupture uncertainties reduces to a data-processing
step w.r.t. source convolutions, once the forward simulations are completed.

2.3 Shared Memory Dynamic Load Balancing

EDGE is exposed to two sources of load imbalances in the shared memory
domain: a) Possibly runtime-dependent performance variations of the worker
threads, and b) diverse memory access patterns, caused by the unstructured
mesh, when reading face-adjacent data in EDGE’s neighboring kernel. Tasks of
the operating system can contribute background noise to the first case. Here,
our core-specialization in Sec. 3 isolates most of the operating system’s tasks to
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Fig. 1. Visualization of the surface point force forward simulations. The output re-
quirements were greatly reduced by only writing tetrahedrons at the surface and by
limiting the output to the first and constant of the 35 modes of every fused simulation.
The gray spheres indicate the locations of the surface point sources. Colors denote the
South-North particle velocities of the eight South-North point forces after 4.25 simu-
lated seconds. Warm colors denote positive velocities, cold colors negative ones. The
entire run covered 16 fused settings and was executed in GCP.
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Fig. 2. Comparison of the post-processed point force simulations with the double-
couple reference. Shown are the seismograms of the particle velocity in South-North
direction for the eight stations at the surface. The x-axis reflects hypocentral distance.
The convolved SGTs are largely indistinguishable from the reference. At the very be-
ginning of each seismogram, a small and expected offset is visible, since we processed
the raw signals without tapering.
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reserved cores, not used by any of EDGE’s threads. However, within the prepa-
ration of this work, we additionally observed rare (≈1% probability per node
and run) performance drops of isolated cores in our program execution. These
drops appear to be independent of the Skylake-processor (bare-metal or virtu-
alized) and the affected core seems to be random. They cannot be circumvented
by using 1 GiB huge pages, as done in [16]. The impact on the overall runtime of
EDGE without dynamic load balancing is severe, since we observed up to 20%
slowdowns in our ADER-DG kernels.

We introduce a dynamic load balancing scheme to account for possible imbal-
ances in EDGE’s shared memory domain. Our load balancer is called, whenever
EDGE reaches a synchronization point and the threads are joined. Synchroniza-
tion automatically happens for wave field output at the free-surface or in the
volume, whereas our point-wise sampling of the wave field at seismic receivers
is entirely asynchronous. Thus, in settings using receivers only, e.g., in an SGT-
only configuration, we enforce artificial synchronization for the purpose of load
balancing. This synchronization interval is a runtime parameter, where all our
scaling runs in this work used 5% of the simulation time, resulting in a total
of 19 synchronization points for the duration of each run. Whenever we reach
a synchronization point, we determine if re-balancing of any of our work re-
gions is required. EDGE’s seismic solver has four significant work regions: 1) the
ADER time-prediction and local update of the send-elements, which computes
data, required by other ranks, 2) the ADER time-prediction and local update of
inner-elements, independent of communication within a time step, 3) the neigh-
boring update of the send-elements, requiring data from other ranks, and 4)
the neighboring update of inner-elements, not requiring any data of other ranks
within a time step [4].

Let us assume a single work region, where worker w is responsible for Nw
elements in a time step. This worker spent a total of tw seconds in respective
work packages from the previous synchronization point to the current one, where
the load balancing is executed. Further, Nall is the number of all elements in the
work region, max(tw) is the maximum invested time of any worker, min(tw) is
the minimum spent time of any worker, and ave(tw) is the average time, spent by
the workers. We define the element throughput Tw of a worker w, the element
throughput Tall of all workers, the imbalance I of the work region, and the
rebalancing Rw of worker w as follows:

Tw =
Nw
tw

, Tall =

W∑
w=1

Tw, I =
max(tw)−min(tw)

ave(tw)
Rw =

Tw ·Nall

Tall
. (4)

Now, whenever the imbalance I exceeds a given threshold, e.g., I > 2.5% in
our case, we re-balance our work region by assigning Rw elements to each of
the workers. If this does not lead to a worker for every element, we increase
the number of elements per worker round-robin, until the Nall elements are
distributed.
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3 Cloud Setup

The cloud offers Infrastructure as a Service (IaaS). This allows us to customize
the entire setup of our high-performance compute clusters to match EDGE’s
demands. Included are not only the choice of the underlying hardware, e.g., the
CPU architecture, but also the entire software stack, for example, the operat-
ing system and its boot-options. This section describes the setup of our cus-
tomized cloud-based compute clusters using the Amazon Web Services (AWS)
and the Google Cloud Platform (GCP). The obtained single-application clusters
are highly specialized to maximize the performance of EDGE (see Sec. 2). All
used software and tools are freely available and open source. Thus, in contrast
to commercial high performance cloud computing solutions, respective charges
of our clusters solely originate from the used AWS and GCP resources.

The first software-related step of our cloud setup is the generation of cus-
tomized cloud images, which are used for our login and compute instances. We
base our AWS cloud image on the AWS ParallelCluster5-variant of CentOS7.
Our GCP CentOS7 cloud image customizes the cloud-offered images of the GCP
centos-7 family. Both cloud image setups share the same set of scripts, which
first install all tools and libraries, required for building and executing our solver.
For example, we install a recent version of the GNU compilers, OpenMPI, the
libraries HDF5 and MOAB, or the performance monitoring tools Score-P and
Scalasca. Once all software is installed system-wide, we customize the config-
uration of the operating system to maximize the instances’ performance and
to minimize possible interference with our solver. Using dual-socket instances,
we reserve the first core of every socket for the operating system and instruct
it through the GRUB2 bootloader to exclusively use these two cores. We com-
plement this configuration in the job executions by pinning our applications’
threads to all but the two set-aside cores. Upon completion of the setups, we
store the images permanently in the cloud. We open-sourced the scripts, tuning
our cluster, such that our findings can be transferred to other software.

We use the two tools AWS ParallelCluster and Slurm GCP6 to generate our
high performance computing clusters. AWS ParallelCluster and Slurm GCP use
the clouds’ APIs for this step, for example, by generating respective virtual pri-
vate networks, or by using our machine images for the compute instances. Both
tools offer a variety of configuration-options, where the most important ones are
the used instance types, the used cloud images, and the instance placing. For
maximum network performance, we use a dynamic AWS placement group and
a single GCP zone for all of the clusters’ instances. Further, since we are gen-
erating single-application clusters, we either generate clusters, exactly matching
our instance requirements, or allocate no initial compute instances at all. In the
latter case, if not used for computations, AWS ParallelCluster runs a single mas-
ter instance, and our Slurm GCP configuration a single controller instance. The
submission and monitoring of jobs on the generated clusters is similar to ev-

5 AWS ParallelCluster is available from: https://aws-parallelcluster.readthedocs.io.
6 Slurm GCP is available from: https://github.com/SchedMD/slurm-gcp.
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ery other Slurm-based7 on-premises solution. However, after job submission, the
change in Slurm’s node types triggers respective resume-scripts in background.
These scripts elastically allocate instances from the cloud for use as Slurm nodes.
Analogue, after completion of the job and a pre-defined idle time, the compute
instances are released back to the cloud through suspend-scripts. Because our
AWS and GCP charges are dominated by the number of allocated instances, the
process of elastically allocating and releasing infrastructure minimizes costs.

4 Benchmarking the Cloud

This section summarizes important Key Performance Indicators (KPIs) of var-
ious cloud instance types on a per-node basis. We limit ourselves to Intel Xeon
instances featuring Skylake-SP CPUs, as our application makes heavy use of
512-bit vector instructions, while maintaining a small memory footprint. CSPs
use special versions of these processors and do not publish their processor-
specifications. The same applies to the specifications of the physical memory
population or network details. We mitigate this lack of documentation by study-
ing a set of micro-benchmarks and a single-node setup of EDGE on various
instance types. The obtained performance is then compared to runs on an on-
premises bare-metal dual-socket Intel Xeon Platinum 8180 machine. The Xeon
8180 is the top-of-the-line processor, that is generally available and fully docu-
mented8. Apart from illustrating the actual performance of each instance type,
we also set the micro-benchmarks’ performance in relation to respective charges.
This allows us to pick the best cloud solution for our application in terms of U.S.
dollars ($) per simulation.

Tab. 1 summarizes all KPIs, we were able to gather from online documen-
tation for our considered instance types. In the text of this section, we shorten
notation by only using the lower-case names of the instance families, when refer-
ring to the considered instance models: n1 for n1-highcpu-96, c5 for c5.18xlarge,
c5n for c5n.18xlarge, and m5 for m5.24xlarge.

As instances are only described by their number of vCPUs (which are hard-
ware threads) and the amount of available memory, it is hard to conclude how
the actual underlying dual-socket platform is comprised. Let us take the vCPU
count as an example. Here, the number of physical CPU cores could be higher
and remaining ”empty” cores could run the hypervisor. We found an indication
in the AWS News Blog, that c5, c5n and m5 use the so-called Nitro Hypervisor,
which provides nearly full hardware performance9. This indicates that no cores
are set aside for additional management tasks. For Google’s n1 we were not able
to find a hint supporting one or the other assumption. A micro-benchmark could
determine this detail by trying to determine Skylake’s last level cache size, which

7 AWS ParallelCluster supports further submission systems, e.g., AWS Batch or SGE.
8 https://ark.intel.com/products/120496/Intel-Xeon-Platinum-8180-Processor-38-

5M-Cache-2-50-GHz
9 AWS News Blog post: https://aws.amazon.com/blogs/aws/amazon-ec2-update-

additional-instance-types-nitro-system-and-cpu-options/.
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KPI n1-highcpu-96 c5.18xlarge c5n.18xlarge m5.24xlarge on-premises

CSP Google Amazon Amazon Amazon N/A
CPU name N/A 8124M* 8124M* 8175M* 8180

#vCPU (incl. SMT) 2x48 2x36 2x36 2x48 2x56
#physical cores N/A 2x18** 2x18** 2x24** 2x28

AVX512 Frequency ≤2.0GHz ≤3.0GHz ≤3.0GHz ≤2.5GHz 2.3GHz
DRAM [GB] 86.4 144 192 384 192

#DIMMs N/A 2x10? 2x12? 2x12/24? 2x12
preemptive $/h $0.72 $0.7 $0.7 $0.96 N/A
on-demand $/h $3.4 $3.1 $3.9 $4.6 N/A

interconnect [Gbps] 16(eth) 25***(eth) 25***(eth) 25***(eth) 100(OPA)

Table 1. Publicly available KPIs for various cloud instances of interest to our work-
load. Pricing is for US East at non-discount hours on Monday mornings (obtained on
3/25/19). *AWS CPU core name strings were retrieved using the ”lscpu” command;
**AWS physical cores are assumed from AWS’s documentation, indicating that all
cores are available to the user due to the Nitro Hypervisor; ***supported in multi-flow
scenarios (means multiple communicating processes per host), each process is limited
to 10 Gbps.

is built as an aggregated cache of Cache-Home-Agent (CHA) slices. Normally,
the number of cores matches the number of active CHAs. However, this is not
important to our application EDGE, hence we did not perform such a test.

As the specifications of the cloud CPUs are not publicly available, also their
frequencies are largely unknown, especially when running AVX(512) instructions.
Therefore, the AVX512 Turbo frequencies are unknown, but given that they are
normally lower than the regular base frequency, we can take the frequencies in
the CSPs’ online documentation1011 as an upper limit.

Similar educated guessing is needed, when studying the instances’ memory
configurations. In n1’s case, 0.9 GB per core are offered, resulting in 86.4 GB for a
two-socket machine. If the machine would be fully populated with 6 DIMMs per
socket, this would mean 7.2 GB DIMMs. Therefore, we assume that the physical
memory is (much) bigger, but still do not know if all DIMMs are plugged in.
For the AWS instances the amount of available memory is at least matching
with 16GB populations, allowing the thesis, that c5 instances have 10 out of
12 slots in use, while c5n and m5 are fully populated. This theory is supported
by AWS’s recent announcement, that c5n instances can offer up to 19% higher
memory bandwidth than c5 instances12.

To shed more light on the instance types, we present micro-benchmarks with
the goal to fill and/or refine some of the vague entries in Tab. 1. In particular, we
test the floating point throughput, the memory throughput, the interconnects’
capabilities and the full-application performance of a single instance.

10 https://aws.amazon.com/ec2/instance-types/
11 https://cloud.google.com/compute/docs/cpu-platforms
12 https://aws.amazon.com/blogs/aws/new-c5n-instances-with-100-gbps-networking/
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Fig. 3. Sustained FP32-TFLOPS of various instance types: a) simple FMA instruction
from register (micro FP32 FMA), b) an MKL-SGEMM call, spanning both sockets
(SGEMM 2s), and c) two MKL-SGEMM calls, one per socket (SGEMM 1s). All num-
bers are compared to the expected AVX512 turbo performance (Paper PEAK).

4.1 Floating Point Throughput

Our first test studies the raw floating point performance. This is a key perfor-
mance metric for EDGE, since the solver’s local kernel is heavily flop-bound
in order five. This kernel executes small FP32 sparse matrix-tensor operators.
The results of our performance tests are shown in Fig. 3. Here, the first bar for
each instance type is theoretical peak performance, derived from documented
values (CSPs’ websites, data sheet for bare-metal [13]). We see that our micro-
benchmark, simply running FMA instructions through a sequence of 32 indepen-
dent vfmadd231ps instructions, is able to reach close to the expected peak per-
formance. While the bare-metal runs match our expectations, we observe about
5% lower values for the virtualized cloud instances. This can have several rea-
sons: a) the virtualization is adding a slight overhead, or b) the AVX512 all-core
turbo-frequencies are about 100 Mhz lower than the CSP-specified frequencies
in Tab. 1. In summary, we see that n1 is able to get 71% of the bare-metal sys-
tem. The AWS instance models c5/c5n reach 80%, while m5 is at 90%. These
numbers are aligned with the difference in peak performance, meaning that the
cloud configurations are within 95% of the efficiency of the bare-metal system.

Further, we ran SGEMM across both sockets and two SGEMMs per socket.
In the latter case, we obtained, compared to the bare-metal system, 66% for
n1, 74% for c5, 77% for c5n, and 90% for m5. This indicates a difference in
the memory subsystem between c5 and c5n, and a weaker subsystem for n1.
Also, c5n seems to throttle the AVX512 frequency by 100-200 MHz, as the ratios
drop to 77% from 80%. We observed a 50:50 frequency split on the bare-metal
machine between 2.2 and 2.3 GHz, due to the TDP limit of the CPUs. Apart
from small performance losses (≤10%), compared to our FMA benchmark, we
conclude, that all instance types offer a solid performance relative to their peak.
Thus, the instance type should be chosen by the pricing for flop-bound codes.

4.2 Memory

After analyzing the floating performance of heavily compute-bound kernels, we
switch to the other extreme and investigate the offered memory bandwidth.
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EDGE’s unstructured accesses to data of the four faced-adjacent tetrahedrons
in the neighboring update kernel (4 · 35 · 9 · 16 · 4 byte/float = 80,640 bytes)
generate a significant pressure on the memory subsystem. Given Skylake-SP’s
FLOPS/bandwidth ratios, this operation runs at close-to full read bandwidth
for order five. As shown in Fig. 4, the indication of the SGEMM tests in Sec. 4.1
is confirmed, since the n1 and c5 instances do not reach Skylake-SP’s maximum
memory performance. Since Goto’s algorithm [10] has a high write bandwidth
demand, due to blocking of the inner product, we can now explain the SGEMM
performance drop. In the case of n1, the measured read bandwidth is very low,
indicating either a multiplexed system among several VMs, a low physical DIMM
population, and/or issues with the virtualization of the NUMA domains of the
host system. For the STREAM triad, c5n is 14% faster than c5. m5 is an ad-
ditionally 9% faster than c5n and very close to the bare-metal solution. This is
aligned with Amazon’s statement that c5n can provide up to 19% more memory
performance over c5. Taking the memory sizes into account, this hints that c5 in-
stances have only 10/12 DIMM sockets populated, whereas c5n and m5 should
use all 6 memory channels per socket. A reduction of the populated memory
channels for compute-optimized instances is explainable, since DRAM is a huge
cost factor in a datacenter. In summary, the c5n and m5 instance models behave
similar to the bare-metal machine. While c5 has an additional degradation, n1’s
read bandwidth is considerably lower. Sec. 4.4 studies how the memory band-
width influences EDGE’s full application performance.

4.3 Interconnect

We close our micro-benchmarking section of the cloud by examining the intercon-
nect, when using AWS’s c5 and GCP’s n1 instance models. Here, we ran a subset
of the latest OSU MPI micro-benchmarks13. Fig. 5 depicts the following micro-
benchmarks: point-to-point one process pair unidirectional bandwidth (osu bw),
point-to-point multiple processes pair unidirectional bandwidth (osu mbw mr),
point-to-point one process pair bidirectional bandwidth (osu bibw), point-to-
point one process pair latency (osu latency). osu bw confirms our expectations

13 http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-
5.5.tar.gz



Petaflop Seismic Simulations in the Public Cloud 13

0
2000
4000
6000
8000

10000
12000
14000

M
B

/s

message size [bytes]

GCP AWS on-premises

0
2000
4000
6000
8000

10000
12000
14000

M
B

/s

message size [bytes]

GCP 2 pairs AWS 4 pairs on-premises

0

5000

10000

15000

20000

25000

M
B

/s

message size [bytes]

GCP AWS on-premises

0

100

200

300

400

500

u
s

message size [bytes]

GCP AWS on-premises

Fig. 5. Interconnect performance of n1-highcpu-96 (GCP), c5.18xlarge (AWS) and the
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for all platforms: on the bare-metal system we get 12 GB/s for the Intel Om-
nipath 100 Gbps fabric, 1.8 GB/s (which is slightly short of 16 Gbps) for n1,
and 1.2 GB/s for c5. As only one flow is active, the AWS performance is there-
fore limited to 10 Gbps. osu bibw shows that all interconnects offer full-duplex
transfers, however GCP’s n1 instances need larger messages for full-duplex band-
width. osu mbw mr, which runs multiple unidirectional channels through mul-
tiple ranks, does not offer an improvement when using Intel OPA. The n1 per-
formance is now at full 16 Gbps for two processes. AWS’s c5 peak is 25 Gbps
with at most 10 GBps per process, meaning that we require at least 3 process
pairs for full bandwidth. For two pairs (not shown), the c5 interconnect achieves
exactly 20 Gbps. Finally, osu latency demonstrates that for message sizes below
16 KiB, both n1 and c5 exhibit 25x higher latencies (25us vs 1us), compared to
Intel OPA. However, recall, that we send #modes · #variables · #fused runs ·
4 byte / float ≈ 20 KiB for every communicating face, when using order 5 and
FP32. Thus, the size of the messages in EDGE, comprised of the communicating
tetrahedral faces, are in the MiB range, which shadows the higher latency. Sec. 5
shows in a simple model of a structured setup, that our solver is robust w.r.t. a
network, offering 5× less bandwidth than latest supercomputing fabrics. This is
due to the face-only stencil of the used high-order DG method.

4.4 Single-Node Application Performance

Finally, after deriving the flop, bandwidth and network performance through
micro-benchmarking, we execute a single node scenario of EDGE with FP32, 16
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fused runs and order 5 (35 · 9 degrees of freedom per element and simulation).
Based on our micro-benchmarks, we expect, that the c5n and m5 instances reach
a performance close to the bare-metal machine. While c5’s performance should
only be slightly lower, the degradation of GCP’s n1 is expected to be most
severe. Fig. 6 confirms this estimate. Due to its higher flop performance, the
m5 instance can get very close to the bare-metal machine (95%). c5 and c5n
stay slightly under 90% of the bare-metal performance. n1 is still able to achieve
57% of the on-premises bare-metal solution with 70% of the flop and 57% of the
STREAM performance.

However, when running in the cloud, one should also consider the instance
pricing. Today’s CSPs offer various types of instances, where we might utilize
preemptive/spot instances for short-running or interruptible jobs. On-demand
instances are best for uninterruptible long-running jobs. Tab. 1 provides the
pricing for both types. We see, that the spot instances offer a huge discount.
Fig. 7 sets the measured full-application performance in relation to the instance
price. We use the price in dollars per 1 billion element updates as a metric. For
a given mesh, number of time steps, and by considering EDGE’s scalability (see
Sec. 5), this allows us to derive the costs of an execution upfront. Additionally,
we are able to derive the most efficient cloud configuration: c5n is most cost-
efficient, when using spot instances, whereas c5 leads for on-demand settings.
Note, that other factors, e.g., the amount of available memory, the interconnect
performance, the storage costs, or the availability of instance types should be
considered in a final decision as well.
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5 Elastic Scalability

The previous section shows that, due latest hardware enhancements, single-
instance public cloud executions can match the performance, provided by on-
premises installations. In order to scale out, novel algorithms are needed to
mitigate the 4-5x lower interconnect bandwidth. We address this by employ-
ing a high-order DG-solver with a high computation-to-communication ratio.
As a side note, even latest on-premises systems can suffer from such an imbal-
ance. A c5.18xlarge instance offers 6.6 TFLOPS with a bandwidth of 25 Gbps.
In contrast to this, one node of the GPU-accelerated Summit supercomputer
has 96 TFLOPS (also FP32) per node and offers 200 Gbps bandwidth14. There-
fore, the cloud offers a FLOPS/bandwidth ratio, which is within 2x of Summit
(of course the latency on Summit is still ∼ 25× better than in the cloud). This
means, in order to run efficiently in the cloud and on Summit, similar approaches
for communication avoidance and hiding are needed. In the following, we scale
our application to 768 c5.18xlarge instances, having 27,648 Skylake-SP cores
with a peak performance of 5 PFLOPS. This is a high instance count, consider-
ing that one normally has to wait in queues on a dedicated supercomputer. In
all our tests the cloud was able to serve our requests within 2.5 hours. That in-
cludes the largest setting, which required booting 768 instances with our custom
machine image and registering them on the Slurm-controller.

We carried out two scaling tests, depicted in Fig. 8 (due to space limitations,
we focussed on AWS for scaling and used GCP for the presented SGT runs).
First, we executed a weak scaling scenario with two processes per instance to
reach the benchmarked 20 Gbps bandwidth. Here, we took a regular five-fold
subdivided hexahedral mesh with a total of 655,360 tetrahedral elements per
instance for 1-512 instances. The 768 instance setting used 384 · 512 · 528 · 5 =
675, 840 elements to provide a proper setting for our dimension-wise 8× 8× 24
partitioning in this case. All boundary conditions were periodic, increasing the

14 https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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communication footprint. Further, we did not exploit any of the structure, when
running our unstructured solver, e.g., stored all adjacency information explicitly.

Taking the 768 instance setting as an example, we obtain (48 ·64 ·2 + 48 ·22 ·
2 + 64 · 22 · 2) · 2 = 22, 144 tetrahedral faces for the six rectangular sides of each
partition. For each face, data of the face-adjacent tetrahedrons has to be commu-
nicated to neighboring ranks. One y-z-side (64 ·22 ·2 faces) neighbors the second
rank on the other socket of each instance. Thus, we obtain an uni-directional
network-only communication volume of 19.6875 KiB · 19, 328 ≈ 371.6 MiB, when
also considering the number of required bytes for the elements’ degrees of free-
dom. With a single-instance average time of 0.81 s per timestep, we can esti-
mate a bandwidth requirement of ∼460 MiB/s on the fabric in one direction and
920 MiB/s full duplex. This is also confirmed by our extensive Scalasca measure-
ments. As AWS EC2 delivers 1.2 GB/s per process, the headroom is sufficient
to account for efficiency losses due to congestion with other cloud jobs, using
the fabric. This is important, as we cannot influence the instances’ placement
within the datacenter’s placement group, e.g., schedule instances, which are all
connected to the same Ethernet switch. For up to 32 instances we measured per-
fect weak scalability of 95% and for larger cluster sizes a slight decrease, staying
above 86%. As comparison, our in-house 32-node Xeon 8180 cluster, connected
by an Intel OPA fabric, achieved a parallel efficiency of 98% on all 32 nodes.

Second, in addition to weak-scaling a structured mesh, we ran the SGT sce-
nario of Sec. 2, which includes topography and has an unstructured mesh, com-
prised of 3,861,780 tetrahedral elements. This setting fits well into 288 GB of
memory, provided by two c5.18xlarge instances. In this case, the volume-to-
surface ratio shrinks with an increased instance count and we expect the fabric
to be limiting at larger scale. Fig. 8 confirms this expectation. We can strong
scale by 4× with close-to 90% efficiency. 60% are still possible, when using once
again 8× more resources and strong scaling the original problem by 32×. While
our elastic cloud cluster delivered 77% parallel efficiency on 32 instances, the 32
nodes bare-metal Intel OPA cluster achieved a parallel efficiency of 90%.

Last but not least, we want to highlight that for neither the weak- nor the
strong-scaling case optimal placement in the datacenter or mesh-aware schedul-
ing was exploited to keep results as generalizable as possible.

6 Discussion and Conclusion

This work demonstrates the efficient use of application-centric cloud clusters for
modern and tightly-coupled scientific computing. Public cloud services offer elas-
tic multi-petaflops machines, which were four years ago only available through
on-premises supercomputing centers. In particular, we examined Google’s and
Amazon’s cloud offerings. For a single instance, we observed a performance,
matching that of a competitive on-premises bare-metal system. This is due to
two recent hardware advancements: a) offloaded hypervisors and b) full virtual-
ization support in CPUs for high performance VMs, allowing access to the un-
derlying logical CPUs and NUMA domains. From an interconnect point of view,
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we observed a 4-5× slow-down in terms of bandwidth and ∼25× in terms of la-
tency, compared to latest high-speed and low-latency interconnects. Taking into
account the per-node performance of supercomputers, we see that recent cloud
offerings are within ∼2× of latest accelerated supercomputers, when it comes to
the per-node interconnect bandwidth. Therefore, no matter if one is running on
an accelerated supercomputer or in the cloud, a bandwidth-efficient algorithm
is needed. This work illustrates the cloud-specific end-to-end optimization of
the high-order ADER-DG solver EDGE for seismic wave propagation problems,
such as earthquake simulations. Due to EDGE’s low communication volume, we
were able to achieve 1.09 PFLOPS on 768 c5.18xlarge instances. These instances
theoretically offer 5 PFLOPS, resulting in an application peak efficiency of more
than 20% and a parallel efficiency of close-to 90% in a weak scaling setup.

This performance can be set into relation to previous work. In [3] a weak-
scaling of another ADER-DG solver, SeisSol, is presented. The authors sustained
1.09 FP64 PFLOPS in hadware on the, at this time, Top500 #10-placed Super-
MUC, an Intel Sandy Bridge system with 6.2 FP32 PFLOPS peak [21] (today
this system is listed #64 in the Nov’18 edition of the Top500 list). The pre-
sented, application-relevant non-zero performance in [3] is 750 FP64-TFLOPS.
In theory, this could double to 1.5 PFLOPS in a potential FP32 run15. Thus,
five years later, public cloud clusters with 12 times less nodes and roughly five
times less cores can replace a 2013 top 10 system.

This is due to three main factors: First, improvements in hardware (often
associated with Moore’s Law): instead of an 8-core CPU at 2.6 GHz, having two
256-bit VPUs without FMA, the current work uses an 18-core CPU at ≈3.0
GHz with two 512-bit FMA-VPUs per core. This means, that each Skylake
core offers ∼4.5× higher capabilities than Sandy Bridge. Including the core-
count, every socket in the cloud cluster is ∼10× more capable than a Super-
MUC socket. Second, the efficient elimination of artificial zero-operations in
the ADER-DG kernels through fused simulations, combined with runtime code-
generation of sparse matrix-tensor kernels through the LIBXSMM library using
single precision. And finally, third, an aggressive communication scheme, utiliz-
ing application-integrated MPI progression. Only the combination of all three
aspects allows EDGE to reach high application-performance in the cloud.

In terms of strong scalability, we scaled a demanding setting from 2 to 64
instances with a parallel efficiency of 60%. This performance is a bit lower,
compared to Intel OPA. For such scenarios, AWS announced the so-called EFA
network, which provides lower latencies at up to 100 Gbps bandwidth.
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